Infection rates with *Leishmania donovani* and *Mycobacterium tuberculosis* in a village in eastern Sudan

Sayda Hassan el-Safi1, Nuha Hamid2, Ahmed Omer3, Ahmed Abdel-Haleem4, Awad Hammad1, Hussein Gad Kareem4 and Marleen Boelaert5

1 Faculty of Medicine, Khartoum University, Khartoum, Sudan
2 National Leishmaniasis Programme, Federal Ministry of Health, Khartoum, Sudan
3 Federal Ministry of Health, Khartoum, Sudan
4 Faculty of Medical Laboratory Sciences, Khartoum University, Khartoum, Sudan
5 Department of Public Health, Prince Leopold Institute of Tropical Medicine, Antwerp, Belgium

Summary

background *Leishmania-tuberculosis* co-infection is not uncommon in clinical practice in East Africa, but little is known about the epidemiology of this problem at population level. A cross-sectional household survey was carried out in an active visceral leishmaniasis (VL) focus in Eastern Sudan in February 2002.

methods All inhabitants of Marbata village in Athbara River Area, Gedarif State, who gave informed consent, underwent both a leishmanin skin test (LST) and a tuberculin test for infection with *L. donovani* and *Mycobacterium tuberculosis*. All subjects were clinically screened for VL and tuberculosis (TB).

results About 66% (252 of 382) were LST-positive, 26% (100 of 382) were tuberculin-positive and 20% (77 of 382) were positive for both tests. By the age of 15, more than 60% of inhabitants were LST-positive, but <20% were tuberculin-positive. By the age of 30, these percentages increased to 100 and 50%. No association was found at the individual level between leishmanial and tuberculous infection after controlling for age.

conclusion In this community study, we found no association between the risk of infection with *L. donovani* and *M. tuberculosis*. However, the progression to active VL disease might be different in *M. tuberculosis*-infected than in non-infected persons and vice versa. Prospective studies are needed to document the prognosis of TB/VL co-infection.

keywords visceral leishmaniasis, epidemiology, leishmanin skin test, tuberculin, survey, Sudan

Introduction

Both visceral leishmaniasis (VL) and tuberculosis (TB) are increasing in the Sudan, particularly in the eastern region of the country. While the relationship between HIV and TB (McCarry et al. 1995) has been documented in Sudan, little is known about TB/Leishmania co-infection, a syndrome that has important clinical implications. Although distinct in aetiology and transmission mechanisms, VL and TB share several features. Many infections remain asymptomatic. Symptoms usually develop after several months or years in those who progress to clinical disease; very long incubation periods (latent infection) may be related to immune suppression occurring at a later age, which apparently turns the latent infection into active disease.

It has been suggested that TB represents one of the immunosuppressive conditions that can cause the progression of latent leishmanial infection to clinical leishmaniasis (Montalban & Callejia 1990). Similarly, VL can reactivate a latent mycobacterial infection (Chaudhuri 1989).

VL or kala-azar is a disease of public health importance in Sudan, which is considered to be one of the main foci of VL in the world (Desjeux 1996). The disease spreads over a wide belt from the Atbara river in the north-east, along the Sudanese-Ethiopian border to the south of the Sobat river reaching Nasir and Malakal, and extending westwards across the White Nile (Zijlstra & el-Hassan 2001). Recent kala-azar epidemics have devastated the population of southern Sudan in the Bentiu area (Seaman et al. 1996) and have severely affected the eastern region in Gedarif State, particularly in the Atbara River area (el-Safi et al. 2002). It has been estimated that at least 1000 cases of VL occur each year in Gedarif State (el-Hassan et al. 1995). The
annual incidence rate is about 38/1000 person-years and the ratio of clinical to subclinical cases was reported as 1.6:1 by Zijlstra et al. (1994).

TB is a major cause of morbidity and mortality worldwide. It threatens one-third of the world’s population and is the most common opportunistic infection in HIV/AIDS. The burden of TB is greatest in low-income countries (Raviglione et al. 1995) where the disease is exacerbated by the HIV/AIDS epidemic (Narain et al. 1992; Lucas et al. 1993). TB is a major health problem in Sudan, which, like other African countries (De Cock & Wilkinson 1995; Cantwell & Binkin 1996), is subject to the dual epidemics of TB and HIV/AIDS. The annual risk of TB infection is estimated at 1.8%, which gives an incidence rate of TB smear-positive cases of 90/100 000 person-years, putting Sudan among the high prevalence countries for TB in the Eastern Mediterranean Region (el-Sony et al. 2002). Age-specific rates were highest among the age group 25–34 with male predominance (National TB Programme 2003, unpublished document). Pulmonary cases represent 80.6% of TB and extra-pulmonary disease constitutes 19.4%. The National TB Programme has successfully introduced the directly observed treatment short course (DOTS) strategy since 1995 (el-Sony et al. 2003).

A number of clinical cases of concomitant VL-TB have been reported in Sudan (Sati 1942; el-Safi et al. 1995; Khalil et al. 1998) and in other parts of the world (Bryceson et al. 1985). However, little is known about the degree of interaction between both infections at community level. We conducted a cross-sectional survey in a Sudanese VL focus to explore age-specific prevalence of TB and VL infection, as well as the extent of co-infection at the community level.

Material and methods

Study area and study population

The survey was organized in Marbata village, located about 100 km south-east of Gedarif town along the Atbara River, in Gedarif State, eastern Sudan, a well-known focus of VL (Hoogstraal & Heyneman 1969). The epidemiology of VL in the area was previously described by el-Safi et al. (2002). There are 112 households in Marbata village and the total population is approximately 500. They are predominantly of ethnic Fur origin, and migrated to this area from the western Darfur region in 1917. The villagers work mainly as agricultural labourers and their staple diet is sorghum or millet porridge (asida). The extended family lives in a compound consisting of several thatched grass huts and enclosed within a thatched grass fence. Goats, sheep, dogs and donkeys are kept inside the compound.

Laboratory tests

For the tuberculin test, 0.1 µl of 5U-strength purified protein derivative (PPD) (VACSERA, Cairo, Egypt) was intradermally injected according to the Mantoux technique on the dorsal surface of the left forearm. The reaction was read between 48 and 72 h after administration. The transverse diameter of palpable induration (not erythema) was recorded in mm (Sokal 1975). Palpable induration of ≥10 mm at the injection site was taken as evidence of tuberculous infection (Rieder 1995).

For the LST, 0.1 µl of L. infantum antigen, supplied by Dr M. Gramiccia, Instituto Superiore di Sanita, Rome, Italy, was injected intradermally on the volar surface of the forearm. The reaction was read after a minimum of 48 h and a maximum of 72 h. We considered a person to be
infected with *L. donovani* if the LST gave a palpable induration of ≥5 mm.

Clinical case definitions

The clinical case definition of a suspected active kala-azar case was somebody with fever for more than 2 weeks and splenomegaly or lymphadenopathy. We searched for post-kala-azar dermal leishmaniasis (PKDL) signs, following the classification of el-Hassan et al. (1992).

Data analysis

All data were entered into an **epi info** V.6 format, and further analysed with **Stata**. To study associations between nominal variables, we computed relative risks and the Pearson chi-square test. Age was categorized into two groups using the median as cut-off. We used stratified analysis to check for possible interaction or confounding of associations.

Results

A total of 402 of the 500 residents of Marbata village agreed to participate in the study, but only 382 were included in this analysis as tuberculin and/or LST data were missing for 20 persons. The main characteristics of the 382 enrolled individuals are shown in Table 1. About 50% of the study subjects were male, with a mean age of 22.4 (SD: 20.9, range from 0 to 90 years).

About 66% (252 of 382) of the study population were LST-positive, 26% (100 of 382) were tuberculin-positive and 20% (77 of 382) were positive for both tests. Figure 1 shows the distribution of the LST and tuberculin reaction by age group.

The diameter of the positive LST reaction ranged between 5 and 48 mm (mean = 17.8, SD: 6.3) and it increased significantly with age (*P* < 0.0001). About 82% (90 of 110) of the individuals who reported a prior history of VL disease had a positive LST compared with 59% (159 of 269) in the group without prior history of the disease, a significant difference (*P* < 0.0001). However, LST positivity was not significantly different in those with (66.2%) and those without (62.2%) family history of the disease (*P* = 0.50).

About 56% of the 100 tuberculin test-positive villagers were male, and their age ranged from 2 to 90 years (mean = 33.6, SD: 20.6). The diameter of positive tuberculin reaction ranged between 10 and 44 mm (mean = 17.6 ± 6.7), increasing significantly with age (*P* < 0.0001). Tuberculin test reaction and prior history of BCG vaccination were not significantly related (*P* = 0.89).

The LST and tuberculin positivity were weakly associated; the crude risk ratio for TB infection in LST-positive people was 1.73 (95% CI: 1.14–2.62) compared with LST-negatives. However, in the stratified analysis this association between LST and tuberculin positivity disappeared after controlling for age (Table 2).

Table 1 The main characteristics of subjects included in survey of Marbata village, Gedarif State, Sudan, February 2002

<table>
<thead>
<tr>
<th>Variables</th>
<th>n = 382 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≤13 years</td>
<td>195 (51.1)</td>
</tr>
<tr>
<td>Male sex</td>
<td>189 (49.5)</td>
</tr>
<tr>
<td>LST-positive</td>
<td>252 (66.0)</td>
</tr>
<tr>
<td>Tuberculin-positive</td>
<td>100 (26.2)</td>
</tr>
<tr>
<td>Prior history of BCG (n = 348)</td>
<td>62 (17.8)</td>
</tr>
<tr>
<td>Past history of VL (n = 379)</td>
<td>110 (29.0)</td>
</tr>
<tr>
<td>Family history of VL (n = 375)</td>
<td>293 (78.1)</td>
</tr>
</tbody>
</table>

LST, leishmanin skin test; VL, visceral leishmaniasis.

Table 3 shows the results of the clinical assessment of the study population. Malaria was confirmed by thick film in six of the 35 complaining with fever. Onchocerciasis was clinically suspected in seven persons. Seven persons corresponded to our clinical case definition of a VL suspect (fever for ≥2 weeks with splenomegaly and/or enlarged lymph nodes), but subsequent lymph gland aspiration could confirm the disease in only one of them. This single kala-azar case tested negative in both LST and tuberculin test. Four of the six non-confirmed VL suspects were LST- and tuberculin-positive, one was LST-positive/tuberculin-negative, and another one was negative in both tests.

Seven PKDL cases were detected, five male and two female, with age ranging between 5 and 13 years. The LST was positive in six (85.7%) and none reacted positively to tuberculosis. Among the village residents we found 12 active cases of TB who were undergoing DOTS treatment, but all 12 refused enrolment in the study.

Discussion

Our study showed very high leishmanial infection rates in Marbata village, and a substantial proportion of the LST-positive inhabitants were also tuberculin-positive. The dynamics of transmission of both diseases are quite different in this community: by the age of 15, more than 60% of the inhabitants were LST-positive, whereas <20% were tuberculin-positive at the same age. After the age of 30 years, almost all of the inhabitants were LST-positive, but only about 50% tested positive for *Mycobacterium tuberculosis* infection.
This is the first study in Sudan to investigate any relationship between TB and VL infection at the community level. LST and tuberculin tests were previously evaluated only on patients with active kala-azar (Zijlstra & el-Hassan 1993). Both tests have their known limitations. The LST measures delayed-type hypersensitivity and correlates well with the in vitro proliferation of mononuclear cells cultured in the presence of leishmanial extracts (Tremonti & Walton 1970). LST becomes positive as Leishmania reactive T cells develop and circulate in the blood. However, the significance of a positive LST test for the individual is not entirely clear; it indicates that the person has developed cell-mediated immunity to Leishmania but whether this indicates protection against new infection is uncertain. The reaction to tuberculin in a previously tuberculin-positive subject appears to be suppressed when this person develops active VL. However, the tuberculin reaction is restored after successful VL treatment, indicating that immunosuppression in VL is both specific and non-specific (Ho et al. 1983; Zijlstra & el-Hassan 1993). For epidemiological work, the LST can be used as an indicator of past infection in the population, although it should be used with caution in populations with high BCG coverage. Rab and Evans (1994) showed

<table>
<thead>
<tr>
<th>Age group by years</th>
<th>Tuberculin-positive in LST-positive, n (%)</th>
<th>Tuberculin-positive in LST-negative, n (%)</th>
<th>RR 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall, crude RR</td>
<td>77/252 (30.6)</td>
<td>23/130 (17.7)</td>
<td>1.73 1.14–2.62</td>
</tr>
<tr>
<td>Age <13 years</td>
<td>10/90 (11.1)</td>
<td>15/105 (14.3)</td>
<td>0.78 0.37–1.64</td>
</tr>
<tr>
<td>Age ≥13 years</td>
<td>67/162 (41.4)</td>
<td>8/25 (32.0)</td>
<td>1.29 0.71–2.36</td>
</tr>
<tr>
<td>Summary RR*</td>
<td></td>
<td></td>
<td>1.04 0.65–1.65</td>
</tr>
<tr>
<td>Male</td>
<td>44/123 (35.8)</td>
<td>12/66 (18.2)</td>
<td>1.97 1.12–3.46</td>
</tr>
<tr>
<td>Female</td>
<td>33/129 (25.6)</td>
<td>11/64 (17.2)</td>
<td>1.49 0.81–2.75</td>
</tr>
<tr>
<td>Summary RR*</td>
<td></td>
<td></td>
<td>1.74 1.15–2.63</td>
</tr>
<tr>
<td>BCG-positive†</td>
<td>7/26 (26.9)</td>
<td>8/36 (22.2)</td>
<td>1.21 0.50–2.92</td>
</tr>
<tr>
<td>BCG-negative</td>
<td>62/203 (30.5)</td>
<td>13/83 (15.7)</td>
<td>1.95 1.14–3.3</td>
</tr>
<tr>
<td>Summary RR*</td>
<td></td>
<td></td>
<td>1.72 1.11–2.78</td>
</tr>
</tbody>
</table>

RR, relative risk; LST, leishmanin skin test; CI, confidence interval.

* No evidence for presence of interaction (test for heterogeneity of stratum-specific estimates, P > 0.05).
† Prior history of BCG not known for 34 individuals.
that prior BCG vaccination inhibits the LST reaction. In our study, only 26.6% of the children below 15 years (n = 188) had a prior history of BCG vaccination. Therefore, suppression of leishmanin reaction because of prior BCG can only marginally have affected the figure of leishmanin positivity rate in this survey, in the sense of a slight underestimation of the true rate.

Similarly, reactivity to tuberculin does not always mean that the person has been previously infected by M. tuberculosis. Because tuberculin contains antigens that are shared with non-tuberculous environmental mycobacteria, sensitization with these organisms can yield a positive skin test in the absence of tuberculous infection. However, Rieder (1995) concluded that in high prevalence countries, the tuberculin test can provide useful information to document tuberculous infection rates at population level. Prior BCG vaccination can induce cross-reactivity with tuberculin PPD, but only a limited number of children in the sample had benefited from prior BCG.

About 66% of the Marbata inhabitants that were included in the present study were found positive on LST and 26% on the tuberculin test. The age-related profile of LST positivity observed in the present study is in agreement with previous reports from Atbara River (el-Safi et al. 2002) and Rahad River Areas (Zijlstra et al. 1994) in eastern Sudan and other VL endemic areas in the world including Ethiopia (Ali & Ashford 1993), Kenya (Leeuwenburg et al. 1983; Schaefer et al. 1994), the Mediterranean region (Pampiglione et al. 1975; Bettini et al. 1977; Gramiccia et al. 1990; Marty et al. 1992), India (Nandy et al. 1987) and Pakistan (Rab & Evans 1994). This pattern of distribution reflects an endemic situation with immunity building up in adolescence and is due to the slow development of Leishmania reactive T cells following exposure to infection. However, a different pattern was observed in the epidemiological study conducted by Shiddo et al. (1995) in Somalia, who observed a decrease in the number of positive individuals after the age of 39. Accordingly they suggested that VL in that area was accompanied by time-limited cell-mediated immunity.

So far few epidemiological studies have been carried out in Sudan to document the extent of tuberculous infection (WHO 1958; Omer et al. 1979). A tuberculin survey amongst Sudanese refugees in Uganda indicated a prevalence of 12% (Migliori et al. 1992), whereas we found 26%. The age distribution for tuberculin in the study was significantly associated with age, as expected. This is in accordance with reports from Somalia where Shiddo et al. (1995) found a continuous increase in the prevalence of tuberculin-positive reactions with increasing age, indicating lifelong cell-mediated immunity in TB.

No association was found at the individual level between the risk for leishmanial and tuberculous infection after controlling for age. This is hardly surprising, as the exposure pattern and transmission routes are different for both infections. However, our data do not imply that there is no interaction at all between TB and VL. Clinical history of both syndromes is determined by the quality of the cell-mediated immune response; therefore, the prognosis of co-infected individuals might well be different from those of persons coping with single infections. In view of this, it is striking that 12 of the 500 villagers (2.4%) were currently undergoing treatment for smear positive TB, which equals a very high TB prevalence, if we assume them to be all true cases. Unfortunately, all refused enrolment, a major weakness of this study, as we were unable to screen them for VL co-infection. TB still carries an important social stigma in this community, and we suspect this was the reason for their refusal.

We conclude that tuberculous infection rates can be high in foci of active VL transmission in Sudan. No association between the risk of both infections was demonstrated at the individual level, but the progression to active disease is likely to be different in those co-infected from those with a single infection. Also, the increasing infectious risk posed by HIV/AIDS might completely change the individual prognosis and the epidemiological features of leishmanial infection in this region of the world. Further prospective studies are needed to examine TB/VL co-infection, to examine the role of HIV in this matter and to investigate the clinical, diagnostic and therapeutic implications of the problem.

Acknowledgements

Authors thank His Excellency the Minister of Health and the Director General, Gedarif State, for their support throughout this work. Authors are grateful to the Sheikhs...
and the People’s Committee of Marbata village and to all
the field workers who contributed during our various field
trips. Also thank Mr Ahmed Omer, Mohammed Mahgoob,
Hassan Nile and Kamal Mohammed for expert technical
assistance; and Dr M. Gramiccia, Instituto Superiore di
Sanita, Italy, for supplying LST antigen. Ms Duria M.
Osman entered the data, and Ms Magboula Abbaker
provided skilful secretarial assistance. This work
was partly funded by grant no. SGS 00/32, EMRO, World
Health Organization and by grant no. PD, IS, Division of
Communicable Disease Surveillance and Response, WHO.

References

el-Hassan AM, Ghalib HW, Zijlstra EE et al. (1992) Post kala-
azar dermal leishmaniasis in the Sudan: clinical features,
pathology and treatment. Transactions of the Royal Society
of Tropical Medicine and Hygiene 86, 245–248.
el-Hassan AM, Zijlstra EE, Ismael A & Ghalib HW (1995) Recent
observations on the epidemiology of kala-azar in the Eastern
and Central States of the Sudan. Tropical and Geographical
Medicine 47, 151–156.
el-Safi S, Musa HA, Karoum A et al. (1995) Leishmaniasis in the
Sudan: II. Field evaluation of the direct agglutination test kit for
the routine diagnosis of visceral leishmaniasis (DAT-VD kit) in
Gedarif area, Eastern Sudan. ‘Preliminary results’. Sudan Med-
ical Journal 33, 113–125.
el-Safi S, Butcheron B, Kheir MM et al. (2002) Epidemiology of
visceral leishmaniasis in Atbara River area, eastern Sudan: the
and Infection 4, 1439–1447.
control in Sudan against seemingly insurmountable odds.
International Journal of Tuberculosis and Lung Diseases 4,
657–664.
el-Sony AL, Mustafa SA, Khamis AH, Enarson DA, Baraka OZ &
services in three states of Sudan. International Journal of
Tuberculosis and Lung Diseases 7, 445–450.
Annual leishmanin transformation in a population. Is positive
leishmanin reaction a life-long phenomenon? Annals of Tropical
Medicine and Parasitology 87, 163–167.
Bettoni S, Pampiglione S & Maroli M (1977) Studies on Medi-
terranean leishmaniasis: V. A preliminary epidemiological sur-
vey of human leishmaniasis in Tuscany. Transactions of the
Royal Society of Tropical Medicine and Hygiene 71, 73–79.
Bryceson AD, Chulay JD, Ho M et al. (1985) Visceral leishman-
iasis unresponsive to antimonial drugs: I. Clinical and immuno-
logical studies. Transactions of the Royal Society of Tropical
Medicine and Hygiene 79, 700–704.
Cantwell MF & Binkin NJ (1996) Tuberculosis in sub-Saharan
Africa: a regional assessment of the impact of human
immunodeficiency virus and national tuberculosis programme
quality. Tubercle and Lung Disease 77, 220–225.
2, 1396–1397.
De Cock KM & Wilkinson D (1995) Tuberculosis control in
resource poor countries: alternative approach in the era of HIV.
Clinics in Dermatology 14, 417–423.
Gramiccia M, Bettini S, Gradoni L et al. (1990) Leishmaniasis in
Sardinia: 5. Leishmanin reaction in the human population of a
focus of low endemicity of canine leishmaniasis. Transactions of
the Royal Society of Tropical Medicine and Hygiene 84, 371–
374.
Ho M, Koech DK, Iha DW & Bryceson AD (1983) Immuno-
suppression in Kenyan visceral leishmaniasis. Clinical and
Experimental Immunology 51, 207–214.
Hoogstraal H & Heyneman D (1969) Leishmaniasis in the Sudan
Republic. American Journal of Tropical Medicine and Hygiene
18, 1091–1210.
Khalil EA, el-Hassan AM, Zijlstra EE et al. (1998) The treatment
of visceral leishmaniasis with sodium stibogluconate in the
Sudan: management of those who do not respond. Annals of
Tropical Medicine and Parasitology 92, 151–158.
Leeuwenburg J, Bryceson AD, Mbunga GG & Siongok TK (1983)
The use of the leishmanin skin-test to define transmission of
leishmaniasis in Baringo district, Kenya. East African Medical
Journal 60, 81–84.
Lucas SB, Hounnou A, Peacock C et al. (1993) The mortality and
pathology of HIV infection in a West African city. AIDS 7,
1569–1579.
Leishmanin reaction in the human population of a highly
demic focus of canine leishmaniasis in Alpes-Maritimes,
France. Transactions of the Royal Society of Tropical Medicine
and Hygiene 86, 249–250.
McCarthy MC, Khalid IO & El Tigani A (1995) HIV-1 infection
in Juba, southern Sudan. Journal of Medical Virology 46,
18–20.
Migliori GB, Borchesi A, Comaschi E et al. (1992) Preliminary study
to antituberculosis chemotherapy in a region of sub-Saharan
Africa: annual risk of tuberculosis infection calculation and
tuberculin survey. Giornale Italiano di Chemoi terapia 39,
5–9.
Montalban C & Calleja JL (1990) Leishmaniasis masking
Nandy A, Neogy AB & Chowdhury AB (1987) Leishmanin test
survey in an endemic village of Indian kala-azar near Calcutta.
Annals of Tropical Medicine Parasitology 81, 693–699.
Narain JP, Raviglione MC & Kochi A (1992) HIV associated
tuberculosis in developing countries: epidemiology and strate-
gies for prevention. Tubercle and Lung Diseases 73, 311–321.
Omer EE, el-Sanosi SM & el-Gaffar AA (1979) Evaluation of
tuberculin sensitivity test in a healthy Sudanese population.
Journal of Tropical Medicine and Hygiene 82, 75–78.
Pampiglione S, Manson-Bahr PE, La Placa M, Borgatti MA &
The leishmanin skin test in kala-azar. Transactions of the Royal
Society of Tropical Medicine and Hygiene 69, 60–68.

