ORIGINAL RESEARCH ARTICLE

Full title: Association between herpes simplex virus type 2 and HIV-1 in a population of married couples from Dakar, Senegal

Short title: HSV-2/HIV-1 association among Senegalese couples

Makhtar Camara PharmD, PhD,*† Moussa Seydi MD,‡ Tandakha Ndiaye Dieye PharmD, PhD,* Papa Salif Sow MD,‡ Souleymane Mboup PharmD, PhD,* Luc Kestens PhD,† Wim Jennes PhD†

*Immunology Unit, Laboratory of Bacteriology-Virology, CHU Le Dantec, Cheikh Anta Diop University, Dakar, Senegal; †Immunology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium; ‡Department of Infectious Diseases, CHU Fann, Cheikh Anta Diop University, Dakar, Senegal

Correspondence to: Wim Jennes, PhD; Immunology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium, Phone: +32 32476227, Fax: +32 32476231, E-mail: wjennes@itg.be
SUMMARY

Numerous studies suggest that herpes simplex virus type 2 (HSV-2) increases the risk of HIV-1 infection but recent clinical trials of HSV-2 suppressive therapy failed to show an effect. We assessed the putative association between HSV-2 and HIV-1 in a population of HIV-concordant-negative, HIV-1-discordant and HIV-1-concordant-positive married couples from Dakar, Senegal. In agreement with previous studies, we observed a strong overall association between HSV-2 and HIV-1 (OR, 4.61; P < 0.001). However, this association was mainly determined by a low HSV-2 prevalence in HIV-concordant-negative couples compared to HIV-1-discordant and HIV-1-concordant-positive couples (23% vs 59% and 66%, P<0.001). We observed no further differences in HSV-2 prevalence between HIV-1-discordant and HIV-1-concordant-positive couples (59% and 66%, P=0.483). Neither the index (59% vs 62%, P = 1.000) or recipient partners (41% vs 63%, P=0.131) in HIV-1-discordant and HIV-1-concordant-positive couples showed significant differences in HSV-2 prevalence. HSV-2 does not constitute a clear risk factor for HIV-1 infection in this population.

KEYWORDS

HSV-2, HIV-1, co-infection, HIV-1-discordant couples, sexual transmission, sexually transmitted infections, sexually transmitted diseases
INTRODUCTION

Herpes simplex virus type 2 (HSV-2) is thought to play an important role in the spread of HIV-1.\textsuperscript{1-2} Cohort studies found that HSV-2 infection increases the risk of HIV-1 acquisition by 2- to 3-fold.\textsuperscript{3,4} Functional studies showed that HSV-2 can facilitate HIV-1 acquisition by disrupting the epithelial barrier of the genital tract and by increasing the number of target cells for HIV-1 in the genital submucosa.\textsuperscript{5,6} Other studies reported a higher risk of onward HIV-1 transmission from individuals co-infected with HIV-1 and HSV-2.\textsuperscript{7,8} This was related to increased HIV-1 levels in genital secretions and plasma from such patients.\textsuperscript{9,10}

Despite strong epidemiological and biological evidence, randomized controlled trials of HSV-2 suppressive therapy failed to show an effect on HIV-1 infection.\textsuperscript{11-13} Two large trials testing HSV-2 suppressive acyclovir treatment in HSV-2-positive/HIV-negative participants failed to show an impact on HIV-1 acquisition.\textsuperscript{11,12} Another trial testing acyclovir treatment in HIV-1/HSV-2 co-infected patients failed to reduce onward HIV-1 transmission to the uninfected partners.\textsuperscript{13} These data cast doubt on the causal nature of the observed HIV-1/HSV-2 associations.\textsuperscript{14,15}

In the present study we tested the putative association between HSV-2 and HIV-1 infection in a well-characterized population of HIV-concordant-negative, HIV-1-discordant and HIV-1-concordant-positive couples from Dakar, Senegal. For all included HIV-1-concordant-positive couples we previously confirmed viral linkage between spouses and determined the internal direction of transmission by molecular and epidemiological analyses.\textsuperscript{16} In this way, we are able to compare HSV-2 prevalences
between HIV-1-discordant and HIV-1-concordant-positive couples in general as well as between the index and recipient partners of these couples specifically. In populations with high prevalences of both HIV-1 and HSV-2, correlations between the two viruses can be expected simply because of their shared route of transmission.\(^{17,18}\) Senegal has very low prevalences of both HIV-1 (< 1%)\(^{19}\) and HSV-2 (~20%)\(^{20,21}\) compared to other Sub-Saharan countries, allowing greater specificity for the detection of a biological association.
METHODS

Study population
HIV-concordant-negative, HIV-1-discordant, and HIV-1-concordant-positive couples were recruited at the outpatient clinic of Fann Hospital in Dakar, Senegal. Blood samples and standard questionnaires with information on sociodemographics and sexual behavior were collected. Husbands and wives were interviewed separately by a trained social assistant. All HIV-1-concordant-positive couples were previously shown to harbour genetically linked viruses by phylogenetic analysis of HIV-1 env gp41.16 Twenty nine HIV-1-concordant-positive couples provided sufficient epidemiological information to deduce the direction of HIV-1 transmission within the couple.16 The study was approved by the Internal Review Board of the Institute of Tropical Medicine (Antwerp, Belgium) and by the Ethical Committees of the Senegalese Ministry of Health (Dakar, Senegal) and the University Hospital of Antwerp (Belgium). All study subjects gave written informed consent prior to enrollment.

Laboratory methods for HIV and HSV-2 diagnosis
Whole blood was drawn into EDTA tubes (Becton Dickinson). Plasma was separated by centrifugation and stored at -80°C. HIV status was evaluated in plasma by current serological testing combining ELISA and Western blotting assays. HSV-2 status was detected in plasma by ELISA (Kalon) according to the manufacturer’s instructions.

Statistical analysis
Differences in continuous and categorical variables between groups were analyzed with non-parametric Mann-Whitney U or Kruskal-Wallis H, and Fisher’s exact or Chi-square tests, respectively. Correlation analyses were performed with the non-parametric
Spearman rank correlation test. The level of significance for all statistical tests was set at $P < 0.05$. Statistical analyses were performed with GraphPad Prism (version 5.01) and SPSS (version 16.0) software.
RESULTS

Thirty-five HIV-concordant-negative couples, 34 HIV-1-discordant couples, and 35 HIV-1-concordant-positive couples were studied, representing a total of 208 individuals (Table 1). There were 3 polygamous partnerships consisting of one husband with two wives (one HIV-concordant-negative and two HIV-1-concordant-positive partnerships); these were counted as 6 separate couples. There were no differences in age or duration of marriage between the 3 couple groups. Index partners in HIV-1-concordant-positive couples were predominantly male, whereas a slightly larger proportion of index partners in HIV-1-discordant couples were female. There were no differences in use of antiretroviral therapy between index partners in HIV-1-discordant and HIV-1-concordant-positive couples. HIV-1-discordant couples were more consistent condom users than HIV-concordant-negative and HIV-1-concordant-positive couples. None of the study participants reported the use of antiviral treatment for HSV-2 infection.

First we correlated HSV-2 and HIV-1 serostatus in the total study population (Figure 1A). HSV-2 and HIV-1 infection were significantly associated (OR, 4.61; 95% CI, 2.55-8.34; P < 0.001). Sixty eight percent showed a concordant HIV-1/HSV-2 status: 75% of HIV-seronegative subjects were also HSV-2-seronegative, and 61% of HIV-1-seropositive patients were also HSV-2-seropositive. However, an important proportion of the subjects (32%) showed discordant HIV-1/HSV-2 results.

Next, we investigated whether HSV-2 infection was differently associated with the HIV-concordant-negative, HIV-1-discordant or HIV-1-concordant-positive status of the couples. In a first general analysis, couples were considered HSV-2-positive when at least one partner in the couple was HSV-2-seropositive (Figure 1B). In comparison with HIV-
concordant-negative couples, HIV-1-discordant and HIV-1-concordant-positive couples showed a significantly higher proportion of HSV-2-positive couples (23% vs. 59% and 66%; P < 0.001). However, no further difference was found between HIV-1-discordant and HIV-1-concordant-positive couples (P = 0.483).

Then, we analyzed whether HSV-2 was differently associated with index or recipient partners in HIV-1-discordant and HIV-1-concordant-positive couples (Figure 1C-D). This analysis was done for all HIV-1-discordant couples in comparison with the 29 HIV-1-concordant-positive couples with known index and recipient partners (Figure 1C), as well as for the 15 HIV-1-discordant and 27 HIV-1-concordant-positive couples with male index and female recipient partners (Figure 1D). Index partners in HIV-1-discordant and HIV-1-concordant-positive couples showed comparable HSV-2 seroprevalences (all index partners: 59% vs. 62%, P = 1.000; male index partners: 47% vs. 63%, P = 0.347). Recipient partners in HIV-1-concordant-positive couples showed a trend towards higher HSV-2 seroprevalence than those in HIV-1-discordant couples (all recipient partners: 63% vs. 41%, P = 0.131; female recipient partners: 63% vs 40%, P = 0.202). However this latter comparison is likely biased by the difference in HIV-1 status between the two groups.

Finally, we investigated whether HIV-1 status has an effect on the HSV-2-discordant or HSV-2-concordant status of the couples instead. To test this, we analyzed the proportions of couples with a HSV-2-concordant-positive status among couples with at least one HSV-2-positive partner (Figure 1E-F). HIV-concordant-negative couples were less frequently HSV-2-concordant-positive than HIV-1-discordant couples or HIV-1-concordant-positive couples (50% vs 70% and 87%, P = 0.099; Figure 1E), but again
there were no marked differences between HIV-1-discordant couples and HIV-1-concordant-positive couples ($P = 0.263$; Figure 1E). Similar results were obtained when this analysis was restricted to HIV-1-discordant and HIV-1-concordant-positive couples with male index and female recipient partners (50% vs 86% and 89%, $P = 0.072$; 86% vs 89%, $P = 1.000$; Figure 1F).
DISCUSSION

In this study, we found that HIV-1-seropositive subjects showed a markedly higher HSV-2 prevalence than HIV-seronegative subjects, confirming the multitude of studies reporting an association between HSV-2 and HIV-1. However, in our study, this association appeared to be mainly determined by the low HSV-2 prevalence in HIV-concordant-negative couples, and we found no further differences in HSV-2 prevalence between HIV-1-discordant and HIV-1-concordant-positive couples. Thus overall, HSV-2 infection did not constitute a clear risk factor for the acquisition or transmission of HIV-1 in our population of HIV-1-discordant and HIV-1-concordant-positive couples.

A large proportion of couples in our study were HSV-2-concordant-positive, which is in agreement with the high infectivity of HSV-2. Interestingly however, HSV-2-positive concordancy was more pronounced for HIV-1-discordant and HIV-1-concordant-positive couples than for HIV-concordant-negative couples, suggesting that HIV-1 also enhances HSV-2 infection. Indeed, in addition to the increased HIV-1 incidence among HSV-2-infected subjects, several studies also observed an important increase in HSV-2 incidence among HIV-1-infected subjects.\textsuperscript{22-24} In fact, recent studies suggest that the risk of acquiring HSV-2 upon prevalent HIV-1 infection is actually higher than the other way around and that the risk is highest for acquiring both viruses during the same follow up interval.\textsuperscript{25-27} Such mutual HIV-1/HSV-2 effects will contribute to the association seen at population level, but at the same time hinder the observation of the individual effects like attempted in the present study. Thus, understanding the relative contributions of HIV-1 and HSV-2 to their overall association will be crucial for the interpretation of observational studies and clinical trials. To achieve this, precise longitudinal studies with
shorter follow up intervals will be needed to obtain better detail on the sequence of acquisition events for both viruses.

Alternatively, our data could support the hypothesis that HSV-2 infection has no causal effect on the acquisition or transmission of HIV-1. Some authors have raised this possibility following the failure of the acyclovir clinical trials.\textsuperscript{11-13} They suggested that the association between HSV-2 and HIV-1 foremost reflects their shared route of transmission and the effect that e.g. high risk sexual behavior has on the incidence of both viruses.\textsuperscript{14,15} Indeed, given that HSV-2 is substantially more infectious than HIV-1, individuals engaging in high risk sexual behavior are more likely to acquire HSV-2 before they acquire HIV-1, without this necessarily reflecting a causal relationship.\textsuperscript{17,18} This hypothesis could explain why in Senegal, a country with very low HIV-1 and HSV-2 prevalences compared to other Sub Saharan countries, HIV-1 and HSV-2 were significantly associated in a population of high-risk female sex workers but not in a population of low-risk pregnant women.\textsuperscript{28} This is also consistent with the high HSV-2 prevalence noted among HIV-negative female sex workers in Kenya.\textsuperscript{29} In this population, HSV-2 serostatus was associated with a longer duration of high-risk sexual behavior but not with increased susceptibility to HIV-1 infection,\textsuperscript{29} which is in agreement with our findings.

The sample size of our study was relatively small and as a result it is possible that we have missed potentially weak effects of HSV-2 on HIV-1 transmission in our study population. For instance, we lacked sufficient statistical power (<70%) to refute the link between HSV-2 and HIV-1 transmission if we considered differences in HSV-2 prevalence between study groups of less than 25% to be biologically relevant. On the
other hand, differences in HSV-2 prevalence between study groups were generally much lower than 25%, which supports our conclusions. Nevertheless, confirmatory studies in larger study populations of HIV-1-discordant and HIV-1-concordant-positive couples remain warranted.

In summary, HSV-2 infection did not constitute a clear risk factor for HIV-1 infection in our population of HIV-1-discordant and HIV-1-concordant-positive couples. Our data could suggest that the interaction between HIV-1 and HSV-2 is more complex than previously thought. Detailed longitudinal studies will be required to dissect the exact temporal relationship between HIV-1 and HSV-2 acquisition.
ACKNOWLEDGMENTS

We thank Abdoul Aziz Diallo and Marema Fall for technical assistance; Ndeye Fatou Ngom Gueye, Ibrahima Ndiaye, Khady Ba Fall, Marianne Ndiaye for the recruitment, counseling and follow-up of the participants; Aïssatou Gaye Ndiaye, Tania Crucitti and Bénédicte De Deeken for HIV and HSV-2 serological testing. This work was supported by the Belgian Fund for Scientific Research (FWO-Vlaanderen, grant G.0660.06), and the Belgian Directorate-General for Development Cooperation.
REFERENCES


9. Serwadda D, Gray RH, Sewankambo NK et al. Human immunodeficiency virus acquisition associated with genital ulcer disease and herpes simplex virus type 2
infection: a nested case-control study in Rakai, Uganda. *J Infect Dis* 2003;188:1492-1497


17. Rottingen JA, Cameron DW, Garnett GP. A systematic review of the epidemiologic interactions between classic sexually transmitted diseases and HIV: how much really is known? Sex Transm Dis 2001;28:579-597


27. Okuku HS, Sanders JE. Factors Associated With Herpes Simplex Virus Type 2 Incidence in a Cohort of Human Immunodeficiency Virus Type 1-Seronegative Kenyan Men and Women Reporting High-Risk Sexual Behavior. *Sex Transm Dis* 2011;38:


**Table 1.** Epidemiological and clinical characteristics of HIV-concordant-negative, HIV-1-discordant, and HIV-1-concordant-positive couples.

<table>
<thead>
<tr>
<th></th>
<th>HIV-concordant-negative (n = 35)</th>
<th>HIV-1-discordant (n = 34)</th>
<th>HIV-1-concordant-positive (n = 35)</th>
<th>P Males</th>
<th>P Females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>Age, years</td>
<td>42 (36-50)</td>
<td>37 (30-42)</td>
<td>46 (38-52)</td>
<td>34 (29-41)</td>
<td>47 (42-53)</td>
</tr>
<tr>
<td>Duration of marriage, years</td>
<td>9 (4-16)</td>
<td>9 (4-16)</td>
<td>7 (4-14)</td>
<td>4 (4-14)</td>
<td>10 (7-14)</td>
</tr>
<tr>
<td>HIV-1 positive, n (%)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>15 (44)</td>
<td>19 (56)</td>
<td>35 (100)</td>
</tr>
<tr>
<td>HIV-1 index partner, n (%)&lt;sup&gt;a&lt;/sup&gt;</td>
<td>-</td>
<td>-</td>
<td>15 (44)</td>
<td>19 (56)</td>
<td>27 (93)</td>
</tr>
<tr>
<td>ARV, n (% of HIV-1 positive)</td>
<td>-</td>
<td>-</td>
<td>12 (80)</td>
<td>14 (74)</td>
<td>24 (71)</td>
</tr>
<tr>
<td>ARV, n (% of HIV-1 index)</td>
<td>-</td>
<td>-</td>
<td>12 (80)</td>
<td>14 (74)</td>
<td>20 (77)</td>
</tr>
<tr>
<td>HSV-2 positive, n (%)</td>
<td>4 (11)</td>
<td>8 (23)</td>
<td>15 (44)</td>
<td>19 (56)</td>
<td>21 (60)</td>
</tr>
<tr>
<td>Sexual contacts/week, n</td>
<td>2 (1-3)</td>
<td>2 (1-3)</td>
<td>2 (1-3)</td>
<td>1 (1-3)</td>
<td>1 (1-3)</td>
</tr>
<tr>
<td>Consistent condom use, n (%)</td>
<td>1 (3)</td>
<td>1 (3)</td>
<td>23 (68)</td>
<td>23 (68)</td>
<td>15 (43)</td>
</tr>
</tbody>
</table>

Data are median (interquartile range) values or n (%) when indicated. Differences in continuous and categorical variables were analyzed with Kruskal-Wallis H and Chi-square or Fisher’s exact tests, respectively. P values below 0.05 are in bold. <sup>a</sup>Data available for 29 of 35 HIV-1-concordant-positive couples.
Figure 1. Association between HSV-2 and HIV-1 among HIV-concordant-negative, HIV-1-discordant and HIV-1-concordant-positive couples. (A) HSV-2 prevalences of HIV-negative and HIV-1 positive subjects in the total study population. (B) HSV-2 prevalences of HIV-concordant-negative, HIV-1-discordant and HIV-1-concordant-positive couples. Couples are considered HSV-2 positive when at least one partner in the couple is HSV-2 seropositive. (C) HSV-2 prevalences of index and recipient partners in HIV-1-discordant and HIV-1-concordant-positive couples. (D) Same as panel (C) but restricted to male index and female recipient partners in HIV-1-discordant and HIV-1-concordant-positive couples. (E) Proportions of HSV-2-concordant-positive couples among HIV-concordant-negative, HIV-1-discordant and HIV-1-concordant-positive couples with at least one HSV-2 seropositive partner. (F) Same as panel (E) but restricted to HIV-1-discordant and HIV-1-concordant-positive couples with male index and female recipient partners. P-values are calculated with Fisher’s exact tests (two groups) or Chi-square tests (three groups).