Hospital Based Clinical Surveillance for
Dengue Haemorrhagic Fever in Bandung, Indonesia
1994 – 1995

Alex Chairulfatah, MD
Djatnika Setiabudi, MD
Ridad Agoes, MD
Marc van Sprundel, MD, PhD
Robert Colebunders, MD, PhD

1. The Department of Childhealth, Padjadjaran University Medical School
 Dr. Hasan Sadikin General Hospital, Jl. Pasteur 38, Bandung 40161 – Indonesia, E-mail address: bikarshs@bdg.centrin.net.id
2. The Department of Parasitology, Padjadjaran University Medical School, idem, Bandung Indonesia
3. The Department of Epidemiology and Community Medicine, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium, + 32 3 820 25 22, + 32 3 820 26 40, Email : vsprund@uia.ua.ac.be
4. Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerp, Belgium, + 32 3 247 64 26, + 32 3 247 64 32, Email : bcoleb@itg.be

Correspondence : R. Colebunders MD, PhD
Institute of Tropical Medicine
Kronenburgstraat 43/3
B-2000 Antwerp, Belgium
📞+32 3 247 64 26 - ☎+32 3 247 64 32
Email : bcoleb@itg.be
Abstract

In Indonesia, by law Dengue Haemorrhagic Fever (DHF) cases must be reported within 24 hours to the district health authority. The objective of this study was to evaluate the adequacy, accuracy and reporting delay of this reporting system. In four major hospitals of the city of Bandung, medical records of hospitalised DHF cases admitted between April 1994 and March 1995 were reviewed. This list of DHF cases was compared with the list of reported cases to the Bandung Municipality Health Office. During the study period 569 DHF cases and 81 Dengue shock syndrome (DSS) cases were diagnosed. Only 199 (31%) of the 650 hospitalised cases with suspected DHF/DSS were reported to the Bandung Municipality Health Office. The percentage of fatal cases was significantly lower among all hospitalised cases 11/650 (1.7%) than among reported cases 5/199 (2.5%). In only 443 of the 583 hospitalised cases (76%), in which a Dengue serological test was performed, was this test positive. Of the 199 reported DHF/DSS cases 151 (76%) had a positive haemaglutination inhibition test. This study shows that the surveillance system for DHF/DSS in Bandung should be strengthened. DHF/DSS cases should be reported on the basis of a diagnosis made during hospitalisation, preferably after a serological confirmation is obtained.

Key words: Dengue, Dengue Haemorrhagic fever, Surveillance, Indonesia
Introduction

Dengue Fever (DF), especially the more severe form of Dengue Haemorrhagic Fever (DHF), is considered to be the arthropod-borne disease with the most important public health significance (WHO 1997). Hundreds of thousands cases of DF and DHF cases are reported each year in tropical regions of America, Africa, Asia, and Oceania (Hayes & Gubler 1992).

Prevention and control of DF and DHF relies on effective surveillance programs. The objective of these programs is the early detection of outbreaks and the prompt implementation of control measures (WHO 1997; Gubler 1989). There are five types of dengue surveillance: virologic, epidemiological, clinical, serologic and entomological surveillance. Virologic surveillance is a very important type of surveillance, however, this form of active surveillance is based on rapid and sensitive diagnostic tests, often not available in many dengue countries (Gubler 1989). To date, most developing countries rely on a clinical, passive surveillance system. Such a system is relatively insensitive (Gubler 1989; Goh 1983) and is dependant upon the awareness and interest of the medical community (Gubler 1989). However, this type of surveillance is logistically and organisationally easy to implement (Gubler 1989).

Morbidity data should be adequate, accurate, and reported timely in order to be useful for surveillance (Evans 1983). In Indonesia, DHF reporting is regulated by the Epidemic Act (UU wabah nr. 4/1984) and the Ministry of Health (regulation nr. 560/1989), which state that every case of an infectious disease which could potentially cause an outbreak should be reported to the district health authority within 24 hours. Diagnosing DHF, however, usually takes more time, certainly if laboratory confirmation of the diagnosis is required.

The objective of this study is to evaluate case reporting of DHF cases admitted to hospitals in Bandung in terms of adequacy, accuracy, and reporting delay.
Methods

The study was conducted between August 1995 and March 1996 in four major hospitals in the city of Bandung, namely: the Dr. Hasan Sadikin Hospital (HSH), the St. Boromeous Hospital (SBH), the Immanuel Hospital (IH) and the St. Yusuf Hospital (SYH).

In order to evaluate the adequacy and accuracy of the reporting system, we reviewed whether hospitalised DHF cases from April 1994 to March 1995 were reported to the Bandung Municipality Health Office and whether diagnoses were confirmed by a serological test.

For the evaluation of reporting delay and other problems in case reporting, hospital officials responsible for reporting (medical record officials) and officials of the Bandung Municipality Health Office, responsible for acceptance of reported cases, were interviewed.

Definitions

The same definitions of "suspected DHF", "DHF patient" and "DHF cases", were used as proposed by the Technical Directory of DHF Monitoring (Petunjuk Teknis Pengamatan Penyakit Demam Berdarah Dengue), issued by the Ministry of Health, Directorate General of CDC and Environmental Health 1992:

1. a suspected DHF case is a patient with acute fever without any obvious cause, evidence of a haemorrhagic manifestation with at least a positive Tourniquet test, and/or a platelet count of less than 150,000/mm³;

2. a DHF patient is:
 a. a patient with signs and symptoms fulfilling the criteria of the clinical diagnosis of DHF, as proposed by the WHO, 1986, and/or
 b. a suspected DHF case with a positive serological test for dengue (Haemaglutination inhibition test or Dengue Blot test).

3. DHF cases include all the DHF patients and the suspected DHF patients.

DHF cases included patients with Dengue shock syndrome (DSS) as proposed by the WHO, 1986.
In hospitals a standardised report form is used; this form should be sent to the health office within 24 hours after admission.

The surveillance system was considered to be adequate if the number of hospitalised DHF cases was similar to the number of reported cases and accurate if the clinical diagnosis on admission had been confirmed by a serological test for Dengue infection during or after hospitalisation.

It was considered a timely reporting, if cases were reported within 24 hours to the Bandung Municipality Health Office.

Laboratory tests to confirm Dengue infection included the haemaglutination inhibition (HI) test, using the Clark and Casals microtechnic modification method (Clark and Casals, 1958), the IgG Dengue blot (GeneLab, Kalbe) and the IgM Dengue blot test (GeneLab, Kalbe) (Chan, 1990). For the interpretation of the Dengue antibody response in the HI test the WHO guidelines were used (WHO, 1986)

Results

Six hundred and fifty DHF/DSS cases were hospitalised during 1994-1995, DSS was diagnosed in 81 patients (12%) and DHF in 569 patients (88%). Fifty six percent of the cases were under 14 years of age (Table 1). Most DSS cases belonged to this age group, namely 76 (94%) of the 81 DSS cases (Table 1). DSS cases were significantly younger than DHF cases ($p = 0.0001$).

Forty four percent of cases were admitted in an early phase of their illness, presenting with fever of less than four days duration (Table 2). The mean number of fever days before hospitalisation was 3.7 days for DHF cases and 4.2 days for DSS cases ($p = 0.005$). Significantly more DSS cases had more than 4 days of fever before admission compared to DHF cases ($p = 0.02$).
Adequacy

Only 199 (31%) of 650 hospitalised DHF/DSS cases were reported to the Bandung Municipality Health Office. The percentage of fatal cases was significantly lower among non reported cases 6/451 (1.3%) and among reported cases 5/199 (2.5%). This discrepancy may be due to the difficulties in establishing the diagnosis of DHF/DSS especially in patients admitted early in their illness. Interviews with medical record officials revealed that many doctors wished to postpone reporting until the diagnosis of DHF/DSS had been confirmed. Moreover, health municipality officials were often asked only to report patients with obvious signs and symptoms of DHF/DSS.

Accuracy

Of the 583 DHF/DSS cases, diagnosed in the hospital, on which a serological test was performed, the test was positive in 443 (76%) of them (Table 3). One hundred and fifty one (76%) of the 199 Dengue cases reported to the Bandung Municipality Health Office, had a positive H.I. result. In 67 of the cases (10%), a serological test was not performed.

Timely report

It was the intention to compare date of reporting on the hospital report forms and the date of registration of the DHF/DSS diagnosis in the Municipal Health Office reporting log book. Unfortunately both dates were not recorded. However, according to interviews with the Municipality Health Officials, the reporting form was often sent by mail, which often took more than 24 hours to arrive, or by courier, who often did not notify the Municipality Health Officials.

Discussion

In the initial phase of the infection, DHF presents with non-specific symptoms and signs. In an early stage of DHF, the differential diagnosis includes many viral and bacterial diseases. Only after the third or fourth day of the illness the presence of
thrombocytopenia and haemoconcentration makes the diagnosis of DHF easier (WHO 1997). DHF phobia may result in overdiagnosis. As parents and physicians are so worried about DHF, unnecessary hospitalisation of children will take place. This phenomenon especially occurs in regions with a high incidence of DHF cases.

In Bandung, less than a third of cases considered by hospital physicians to be DHF cases were reported to the Municipality Health Office. Considering the limited human resources and the low budget for Dengue control, the request of the Municipal Health Officials to report only those patients with obvious DHF manifestations is understandable, but this could lead to underreporting.

The percentage of Dengue cases confirmed by serology was high (76%), however, this does not mean the diagnosis of DHF was always accurate. The diagnosis of Dengue infection by the recovery of virus or the detection of viral antigen is preferable to serological diagnosis (WHO 1997), but such tests are not widely available in Indonesia. Although a presumptive diagnosis of a recent Dengue infection can often be made on a single serum sample, a conclusive diagnosis can only be made when rising levels of anti-Dengue immunoglobulin are detected in paired sera. The diagnosis of an acute dengue infection is made when antibody levels rise during 2–4 weeks following infection. The subsequent decline to baseline levels requires another 6–24 weeks, during which time single serum assays may still reveal elevated anti dengue IgM or IgG antibodies. The most commonly used serological techniques for the diagnosis of dengue infection are the MAC Elisa and the H.I. test (WHO 1997). The MAC Elisa is not widely available in Indonesia, while the H.I. test is available in most provincial laboratories. The H.I. test is simple, sensitive and reproducible and uses locally prepared reagents (WHO 1997). In this study the H.I. test was only performed on 244 of the tested 583 patients (42%). The IgG dengue blot test was performed more often, but only on a single serum sample. A positive IgG dengue blot result on a single sample does not indicate an acute Dengue
infection (Chan et al. 1990). Therefore such a single IgG Dengue blot test is not a useful test in a surveillance program.

In conclusion the hospital based clinical surveillance system for DHF in Bandung does not fulfil the criteria of adequacy, accuracy, and timely reporting. DHF cases should be reported on the basis of a diagnosis made during hospitalisation, preferably after serological confirmation is obtained. In Bandung the most cost effective and reliable way to do so is the use of the H.I. test on paired sera. Given the importance of DHF on public health, the surveillance system for DHF in Bandung should be strengthened. The problems Bandung is facing with regard to surveillance of DHF are probably similar to problems encountered in many other places in developing countries, where the DHF burden is increasing. In order to improve the surveillance system the first thing to do is to evaluate it (CDC, 1988). This can be done with relatively simple methods, as has been done in Bandung.

Acknowledgements

This study was made possible with the financial support from the Belgian Ministry of Development Cooperation (ABOS), as part of an Interuniversity Program of Cooperation between the Flemish Interuniversity Council (VLIR) and the Padjadjaran University, Bandung, Indonesia.
References

Table 1: Number of Dengue Haemorrhagic Fever (DHF) and Dengue Shock Syndrome (DSS) by age group

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>DHF (%)</th>
<th>DSS (%)</th>
<th>DHF + DSS</th>
<th>Deaths (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2</td>
<td>13 (2.3)</td>
<td>6 (7.4)</td>
<td>19</td>
<td>1 (5.2)</td>
</tr>
<tr>
<td>2 – 4</td>
<td>50 (8.8)</td>
<td>22 (27.2)</td>
<td>72</td>
<td>3 (4.2)</td>
</tr>
<tr>
<td>5 – 8</td>
<td>104 (18.3)</td>
<td>21 (25.9)</td>
<td>125</td>
<td>4 (3.2)</td>
</tr>
<tr>
<td>9 – 14</td>
<td>120 (21.1)</td>
<td>27 (33.3)</td>
<td>147</td>
<td>2 (1.4)</td>
</tr>
<tr>
<td>> 14</td>
<td>282 (49.6)</td>
<td>5 §.2</td>
<td>287</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td></td>
<td>569</td>
<td>81</td>
<td>650</td>
<td>11 (1.7)</td>
</tr>
</tbody>
</table>

Table 2: Duration of fever prior to admission of the Dengue haemorrhagic fever (DHF) and dengue Shock Syndrome (DSS) cases

<table>
<thead>
<tr>
<th>Nb fever days</th>
<th>DHF N</th>
<th>%</th>
<th>DSS N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>84</td>
<td>15</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>156</td>
<td>27</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>140</td>
<td>25</td>
<td>22</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>129</td>
<td>23</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>46</td>
<td>8</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>569</td>
<td>100</td>
<td>81</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 3: Dengue serological tests in hospitalised cases

<table>
<thead>
<tr>
<th>Dengue serological test</th>
<th>No of tests</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI test</td>
<td>244</td>
<td>151</td>
<td>62</td>
</tr>
<tr>
<td>IgG Dengue blot (a)</td>
<td>307</td>
<td>278</td>
<td>91</td>
</tr>
<tr>
<td>IgM Dengue blot (a)</td>
<td>24</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>HI test + IgM Dengue blot</td>
<td>3</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>IgG + IgM Dengue blot</td>
<td>5</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>583</td>
<td>443</td>
<td>76</td>
</tr>
</tbody>
</table>

a. Genelab, Kalbe