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Lambaréné (CERMEL), Albert Schweitzer Hospital, Lambaréné, Gabon, 4. Institut für Tropenmedizin,
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Abstract

Background: Tuberculosis-associated immune reconstitution inflammatory

syndrome (TB-IRIS) remains a poorly understood complication in HIV-TB patients

receiving antiretroviral therapy (ART). TB-IRIS could be associated with an

exaggerated immune response to TB-antigens. We compared the recovery of IFNc

responses to recall and TB-antigens and explored in vitro innate cytokine

production in TB-IRIS patients.

Methods: In a prospective cohort study of HIV-TB co-infected patients treated for

TB before ART initiation, we compared 18 patients who developed TB-IRIS with 18

non-IRIS controls matched for age, sex and CD4 count. We analyzed IFNc ELISpot

responses to CMV, influenza, TB and LPS before ART and during TB-IRIS. CMV

and LPS stimulated ELISpot supernatants were subsequently evaluated for

production of IL-12p70, IL-6, TNFa and IL-10 by Luminex.

Results: Before ART, all responses were similar between TB-IRIS patients and

non-IRIS controls. During TB-IRIS, IFNc responses to TB and influenza antigens

were comparable between TB-IRIS patients and non-IRIS controls, but responses

to CMV and LPS remained significantly lower in TB-IRIS patients. Production of

innate cytokines was similar between TB-IRIS patients and non-IRIS controls.

However, upon LPS stimulation, IL-6/IL-10 and TNFa/IL-10 ratios were increased in

TB-IRIS patients compared to non-IRIS controls.
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Conclusion: TB-IRIS patients did not display excessive IFNc responses to TB-

antigens. In contrast, the reconstitution of CMV and LPS responses was delayed in

the TB-IRIS group. For LPS, this was linked with a pro-inflammatory shift in the

innate cytokine balance. These data are in support of a prominent role of the innate

immune system in TB-IRIS.

Introduction

Together with the HIV pandemic there has been a global increase in the number

of tuberculosis (TB) infections [1]. An estimated 14 million individuals are dually

infected with HIV and TB worldwide [2]. Despite recent WHO recommendations

for early antiretroviral therapy (ART) [3], treatment is started at late stages of HIV

infection in many developing countries [4]. This puts patients at increased risk of

developing tuberculosis-associated immune reconstitution inflammatory syn-

drome (TB-IRIS) during ART [5]. TB-IRIS presents in up to 25% of HIV-TB

patients as worsening symptoms of TB during ART, despite a favourable response

to TB-treatment (hence the name ‘‘paradoxical TB-IRIS’’) [6]. This complication

typically occurs within the first 2 months after starting ART, with the majority

occurring within the first few weeks [7]. TB-IRIS poses a significant diagnostic

challenge to physicians and reliable laboratory markers to help detect this

syndrome are urgently needed [8].

Known risk factors of TB-IRIS include a low CD4 count, high TB-antigen

burden and short interval between initiation of TB treatment and ART [9, 10].

The pathogenesis of TB-IRIS remains largely unclear, although there are clear

signs of tissue-destructive inflammation during immune reconstitution (reviewed

in [11, 12]). This process could involve an amplified immune response to TB

bacilli or their residual antigens [11, 13]. Early research suggested that TB-IRIS

development was linked to elevated T-helper type 1 (Th1) responses to TB-

antigens. Indeed, studies in TB-IRIS patients reported elevated IFNc responses to

several TB-associated antigenic compounds such as purified protein derivative

(PPD), 6 kDa early secretory antigenic target (ESAT-6) and 10 kDa culture filtrate

antigen (CFP-10) [14–18]. However, elevated IFNc responses to TB-antigens are

often also seen in HIV-TB patients who do not develop TB-IRIS [19–21], casting

doubt on the causal role of Th1 cells in TB-IRIS pathogenesis. It has been

suggested that disturbances in the innate immune system [22] or in the interplay

between the innate and adaptive immune system [11] could drive TB-IRIS

pathogenesis. This is supported by repeated findings of elevated levels of IL-6 and

TNFa, among other innate cytokines, during TB-IRIS [14, 16, 23–26].

Interestingly, elevated innate cytokine production has also been reported in TB-

IRIS patients after toll-like receptor (TLR) 2 stimulation with lipomannan, a TB

pathogen-associated molecular pattern (PAMP) [27]. Put together, there is

evidence that responses to antigenic stimulation are unbalanced in TB-IRIS, both
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in the innate and the adaptive arm of the immune system. However, the roles of

antigen-specific IFNc production and TLR stimulation in TB-IRIS remain to be

completely elucidated.

In this study, we aimed to assess the ART related recovery of IFNc responses in

TB-IRIS patients. To this end, we determined specific responses to a number of

TB and recall antigens in a well matched selection of TB-IRIS patients and

controls from a large prospective cohort [28]. In addition, we explored the

possible innate component of TB-IRIS by studying cytokine production upon

TLR4 stimulation with lipopolysaccharide (LPS). We report a disturbed

reconstitution of the IFNc recall response, without an excessive IFNc response to

TB-antigens. In addition, we observed a pro-inflammatory shift in the innate

cytokine balance upon LPS stimulation during TB-IRIS, providing evidence of the

involvement of the innate immune system in TB-IRIS.

Materials and Methods

Study population

Patients were recruited in a prospective observational study on paradoxical TB-

IRIS at Mulago Hospital, Kampala, Uganda, between January 2008 and July 2010

as described previously [9, 28, 29]. The present study is based on HIV-TB co-

infected adults who were being treated for active TB infection and put on ART

within 2 months after starting TB treatment (median 6 weeks prior to ART). All

HIV-patients received non-nucleoside reverse transcriptase inhibitor-based ART

according to Ugandan national guidelines and were monitored for paradoxical

TB-IRIS development during at least 3 months. Blood samples were taken before

ART initiation (pre-ART) and when patients were diagnosed for TB-IRIS (IRIS

event). Patients without IRIS-related symptoms were used as non-IRIS controls

and had samples taken pre-ART, at 2 weeks and 1 month on ART. To compare

with the expected immunocompetent antigen responses, two additional groups of

HIV-uninfected subjects were recruited. One group was receiving treatment for

active TB for less than 4 months (HIV2TB+ controls) while the other had no

clinical signs of active TB (HIV2TB2 controls). HIV-uninfected subjects had

samples taken only once.

Patient selection and matching

A large majority of patients from our cohort developed TB-IRIS within 1 month

after ART initiation. To limit heterogeneity among TB-IRIS patients, we included

only patients who developed TB-IRIS within one month on ART. This stricter

selection of patients reduces potential bias due to differences in kinetics and

immunopathology between early- and late-onset TB-IRIS. Selected TB-IRIS

patients with PBMCs available pre-ART and at occurrence of IRIS were matched 1

by 1 with non-IRIS controls for sex, baseline CD4 count (+/2 15 CD4 cells/mm3)

and age (#10 years difference). Samples from non-IRIS controls, serving as a

Cytokine Responses in TB-IRIS

PLOS ONE | DOI:10.1371/journal.pone.0113101 November 21, 2014 3 / 16



control time point for their paired IRIS event, were selected at either 2 weeks or 1

month on ART. This selective pairing allowed for a matched time on ART

between TB-IRIS patients and non-IRIS controls.

Definitions

Mycobacterium tuberculosis infection was diagnosed according to the TB/HIV

WHO guidelines [30]. The diagnostic evaluation for TB included: clinical

examination, chest X-rays and abdominal ultrasounds, sputum smear microscopy

for acid-fast bacilli and mycobacterial culture of sputum, aspirate or effusion if

available. TB-IRIS cases were classified by a committee of two co-authors (RC and

WW) after reviewing all suspected TB-IRIS cases evaluated according to the

International Network for the Study of HIV-associated IRIS (INSHI) clinical case-

definition for resource limited settings [5]. This evaluation included: a symptom

questionnaire, detailed physical examination to confirm TB-IRIS and exclude

alternative causes and comparison of a second chest X-ray and abdominal

ultrasound scan to the patient’s baseline examination. Biological TB-IRIS samples

collected when patients developed new or worsening symptoms following

initiation of ART. These symptoms included at least 1 major criterion, such as

enlarged lymph nodes, or 2 minor criteria, such as fever and cough.

ELISpot assays

PBMCs were collected from TB-IRIS patients and cryopreserved in liquid

nitrogen. Samples were consequently thawed and IFNc responses to antigens were

measured by ELISpot (Diaclone SAS, Besançon Cedex, France) according to the

manufacturer’s instructions. In brief, PBMCs were cultured overnight in an

antibody-coated ELISpot filter plate at 200,000 cells/200 ml in RMPI+2.5% human

serum in the presence of either 10 mg/ml cytomegalovirus (CMV) lysate (Institut

Virion\Serion GmbH, Würzburg, Germany), 5 mg/ml whole influenza virus

antigen (H3N2 A/Sydney/5/97, National Institute for Biological Standards and

Control, Hertfordshire, Great Britain), 10 mg/ml PPD (Statens Serum Institute,

Copenhagen, Denmark), 10 mg/ml recombinant ESAT-6 (Statens Serum Institute,

Copenhagen, Denmark), and 10 mg/ml recombinant CFP-10 (a kind gift from

Lionex Diagnostics and Therapeutics, Braunschweig, Germany). In addition,

100 ng/ml LPS (E. coli O55:B5, Sigma-Aldrich BVBA, Diegem, Belgium) was

included separately as a strong inducer of innate cytokines. Medium only and

5 mg/ml staphylococcal enterotoxin B (SEB, Sigma-Aldrich BVBA, Diegem,

Belgium) were used as negative and positive controls, respectively. The number of

IFNc spot-forming cells (SFC) per 106 PBMCs was determined using the ELISpot

Reader and ELISpot Reader software (AID, Strassberg, Germany). Data from

unstimulated medium controls was subtracted before reporting the number of

SFC. Because we directly compared quantitative responses between patient

groups, no criteria were used for defining positive responses.
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Cytokine multiplex assay

ELISpot supernatants from PBMCs stimulated with CMV and LPS were stored at

280 C̊ until further use. Samples were thawed within 1 hour prior to analysing

cytokine levels by using the Bio-Plex human cytokine assay kits (Bio-Rad

Laboratories NV-SA, Nazareth, Belgium) according to the manufacturer’s

instructions. We measured in vitro levels of IL-6, TNFa and IL-10 as a

representation of innate pro- and anti-inflammatory cytokine production. In

addition, IL-12p70 was measured as a link between changes in IFNc responses and

monocyte function. Samples were diluted 26 for TNFa and IL-10 and 106 for

IL-6 to allow optimal detection of both high and low cytokine concentrations.

Ethical considerations

The study was approved by the Research Committee of the Infectious Diseases

Institute (IDI), the ethical review board of Makerere University School of

Medicine, the Uganda National Council of Science and Technology and by the

institutional review board of the Institute of Tropical Medicine of Antwerp and

the Ethics Committees of the Faculties of Medicine of the University of Antwerp.

Written informed consent was obtained from all study participants.

Statistical analysis

Differences between paired patients and changes in concentration over time for

each patient were analysed using the Wilcoxon signed-rank test for paired data.

Differences between HIV-infected and HIV-uninfected patients were analysed

using the Mann-Whitney U test. Correlations were calculated using the

Spearman’s rank correlation. Statistics were performed using SPSS software

(version 17.0) or GraphPad Prism (version 5) with significance level set at

p,0.05. Because of the hypothesis driven nature of this study, no correction for

multiple testing was applied [31, 32].

Results

Study population

A total of 18 TB-IRIS patients were paired with 18 non-IRIS controls (Table 1).

TB-IRIS patients and non-IRIS controls did not differ regarding baseline viral

load, TB treatment duration prior to ART, or ART duration prior to IRIS event or

corresponding control time point. Twenty two HIV uninfected controls were

included in the study, of whom 9 were being treated for TB (HIV-TB+ controls)

and 13 did not have symptoms of TB (HIV-TB- controls). Neither HIV-TB+ nor

HIV-TB- controls differed from TB-IRIS patients or non-IRIS controls regarding

age or sex.
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Antigen-specific IFNc ELISpot responses in HIV-TB patients

developing TB-IRIS

We examined IFNc responses to TB-antigens, CMV, Influenza and LPS (a well-

known TLR4 antagonist) in order to assess the antigen-specific and non-specific

immunity in TB-IRIS patients compared to non-IRIS, HIV-TB+ and HIV-TB-

controls (Figure 1). At pre-ART, we observed no difference in IFNc responses

between TB-IRIS patients and non-IRIS controls for any of the antigens tested.

Both groups showed a diminished IFNc response to PPD, CMV, Influenza and

LPS when compared to HIV-TB+ controls (p#0.027) and to LPS and influenza

when compared to HIV-TB- controls (p#0.015).

IFNc responses to the different TB-antigens were also similar between TB-IRIS

patients and non-IRIS controls at IRIS event (Figure 1). Both groups showed

signs of higher PPD responses compared to before ART. This increase was

statistically significant for non-IRIS controls (p50.031), while TB-IRIS patients

showed a trend (p50.109). Both groups also showed signs of higher PPD

responses compared HIV-TB- controls, yielding significant results for TB-IRIS

patients only (p50.007). In contrast, IFNc responses to CMV and LPS were

significantly lower in TB-IRIS patients compared to non-IRIS controls (p50.039

and p50.016, respectively). TB-IRIS patients also showed lower CMV responses

compared to HIV-TB+ controls (p50.027), and lower LPS responses compared to

HIV-TB+ and HIV-TB- controls (p,0.001 and p50.001, respectively). In

contrast to TB-IRIS patients, non-IRIS controls showed a significantly recovered

response to LPS compared to pre-ART (p50.015), which was still lower compared

to HIV-TB+ controls (p50.034). Responses to influenza were not significantly

different between TB-IRIS patients and non-IRIS controls. Responses to influenza

did not recover within the first weeks of ART for either TB-IRIS patients or for

Table 1. Characteristics of TB-IRIS patients and matched controls.

Characteristics TB IRIS (n518) non-IRIS controls (n518) pa

Prior to ART

Male sex, n (%) 8 (44) 8 (44) 0.815b

Age (years) 34 (33–43) 40 (31–44) 0.760

CD4 (cell/mm3) 19 (11–119) 23 (8–93) 0.477

TB treatment duration prior to ART (days) 36 (23–56) 46 (23–58) 0.663

Viral load (log copies/ml)c 5.4 (5.3–5.8) 5.53 (5.1–5.6) 0.646

During ART

Days between start of ART and TB-IRIS/control event 14 (12–22) 16 (14–28) 0.297

Values are shown as median values with interquartile range. The level of significance was set to p,0.05 for all tests. TB-IRIS patients were matched to non-
IRIS controls for baseline CD4 count, age and sex.
a Wilcoxon signed-rank test.
b Mc Nemar test for binominal data.
c n510.

doi:10.1371/journal.pone.0113101.t001
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Figure 1. Antigen-specific IFNc responses in TB-IRIS patients and controls. Dots on these graphs represent IFNc spot-forming cells per 106 PBMCs in
TB-IRIS patients (IRIS+) and non-IRIS controls (IRIS-) after stimulation with CMV lysate (A), influenza antigen A (B), LPS (C), PPD (D), ESAT-6 (E) and
CFP-10 (F). Dots connected with full lines represent matched patient pairs. Horizontal full lines represent median values for HIV-TB+ controls and HIV-TB-
controls. Horizontal capped lines represent statistical comparisons between matched patients or between time points. The level of significance was set to
p,0.05. A Wilcoxon signed-rank test was used to calculate p values between matched HIV patients and time points. Due to limited availability of viable
PBMCs and pairwise exclusion, the number of patients across antigens and time points differed. Number of patients pre-ARTwere; 13 (A), 10 (B), 16 (C), 14
(D), 14 (E) and 14 (F). Number of patients during IRIS event were; 8 (A), 6 (B), 16 (C), 9 (D), 9 (E) and 9 (F).

doi:10.1371/journal.pone.0113101.g001
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non-IRIS controls compared to those in HIV-TB+ (p#0.003) and HIV-TB-

controls (p#0.015) at every time point.

Innate cytokine production upon stimulation with CMV, PPD and

LPS

We next explored whether production of innate cytokines could provide an

explanation for the delayed reconstitution of CMV and LPS responses in TB-IRIS

patients. To this end, we analysed levels of the pro-inflammatory cytokines IL-12,

TNFa and IL-6 and of the anti-inflammatory cytokine IL-10 in ELISpot

supernatants after stimulation with CMV, PPD and LPS, but found no differences

between TB-IRIS patients and non-IRIS controls (Table 2). Systemic inflamma-

tion can be marked by increases in pro-inflammatory cytokines as well as by

decreases in anti-inflammatory cytokines and their net balance has been shown to

determine the clinical outcome of inflammation [33–37]. Accordingly, we

explored IL-6/IL-10 and TNFa/IL-10 ratios in TB-IRIS patients and non-IRIS

controls (Figure 2). After LPS stimulation, we observed significantly higher IL-6/

IL-10 (p50.025) and TNFa/IL-10 (p50.047) ratios in TB-IRIS patients compared

to non-IRIS controls (Figure 2A). These differences corresponded to significant

increases of IL-6/IL-10 (p50.005) and TNFa/IL-10 (p50.004) ratios from pre-

ART to IRIS event in TB-IRIS patients but not in non-IRIS controls. Interestingly,

IL-6/IL-10 and TNFa/IL-10 ratios correlated inversely with IFNc ELISpot

responses to LPS in the total HIV+/TB+ patient population (Figure 3).

Stimulation with CMV or PPD did not yield significant differences in cytokine

ratios between patient groups (Figure 2B&C) nor resulted in significant

correlations between IFNc ELISpot responses and cytokine ratios (Figure 3B&C).

Discussion

TB-IRIS could involve an amplified immune response to TB bacilli or their

residual antigens [11, 13]. Here, we aimed to study the recovery of antigen-specific

responses of HIV-TB patients who developed TB-IRIS during ART. To that end,

we compared IFNc responses of PBMCs to a panel of TB-associated antigens and

recall antigens between TB-IRIS patients and non-IRIS controls, matched for CD4

count, age and sex. In addition, we explored innate cytokine responses to CMV,

PPD and LPS. We report a disturbed reconstitution of the IFNc response to CMV

and LPS during TB-IRIS, without an excessive IFNc response to TB-antigens. In

addition, we observed a pro-inflammatory shift in the innate cytokine balance

upon LPS stimulation during TB-IRIS.

TB-IRIS patients showed lower IFNc responses to the recall antigen CMV and

to LPS during TB-IRIS, compared to non-IRIS controls. Unlike CMV and LPS,

however, we did not observe significantly increased or decreased IFNc responses

to any of the TB-antigens, nor to Influenza in TB-IRIS patients. These results are

in line with a number of previous studies [14, 19–21]. However, our findings are
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not in agreement with previous reports of elevated PPD-responses during TB-IRIS

[14–18]. The magnitude of IFNc ELISPOT responses to TB-antigens has been

associated to the antigen-load, duration of TB-treatment and the extent of

immune-suppression in HIV patients [38–40]. All three of these factors have been

identified as risk-factors for TB-IRIS which could potentially influence

immunological measurements, consequently leading to discrepancies across

studies. In the present study, we minimize this potential bias by directly

comparing (time-)matched patients under very similar clinical conditions,

possibly explaining the discrepancy with studies that observed elevations in TB-

associated responses. Together, our results suggest that the conditions associated

with TB-IRIS, such as a high TB-antigen load and persistent inflammation [41–

44], could disturb the reconstitution of recall responses (to CMV in this case),

rather than cause an excessive TB-specific IFNc response. In addition, the lowered

response to LPS could point towards a role of the innate immune system.

Since we previously reported a significant rise in IL-6 plasma levels from pre-

ART to TB-IRIS event, which lead to higher IL-6 levels compared to non-IRIS

controls [26], we next hypothesised that TB-IRIS might result from an aberrant

innate immune response. In contrast to our previous in vivo measurements, we

found no significant differences in the in vitro production of pro- and anti-

inflammatory cytokines between matched TB-IRIS patients and non-IRIS controls

after exposure to CMV, PPD and LPS. In addition to absolute levels, however, the

Table 2. In vitro cytokine production in response to CMV, PPD or LPS stimulation in TB-IRIS patients and non-IRIS controls.

Pre-ART IRIS event Change over time (pa)

TB-IRIS Control pa TB-IRIS Control pa TB-IRIS Control

CMV stimulationb

IL-12p70 (pg/ml) 1.3 (0.6–2.4) 0.9 (0.6–2.4) 0.866 2.6 (1.1–3.1) 2.2 (1.1–3.1) 0.725 0.225 0.107

IL-6 (pg/ml) 207.9 (64.1–1633.8) 103.3 (32.2–523.6) 0.735 1491.5 (118.9–2538.4) 933.7 (295.1–3126.7) 0.311 0.237 0.028

TNFa (pg/ml) 135.4 (37.9–338.8) 49.2 (2.1–145.3) 0.753 279.5 (52.4–354.0) 159.8 (100.65–380.05) 0.462 0.091 0.091

IL-10 (pg/ml) 0.6 (0.5–1.0) 0.2 (0.2–1.2) 0.237 1.4 (0.4–1.9) 1.6 (0.35–4.15) 1.000 0.753 0.043

PPD stimulationc

IL-6 (ng/ml) 16.3 (9.0–35.9) 15.9 (8.9–19.1) 0.345 54.2 (11.1–71.1) 33.1 (27.7–40.6) 0.594 0.128 0.116

TNFa (ng/ml) 1.3 (0.7–2.0) 1.0 (0.6–2.5) 0.221 3.8 (1.2–9.1) 3.4 (1.0–6.2) 0.953 0.043 0.463

IL-10 (pg/ml) 16.8 (10.5–47.0) 17.3 (8.5–30.8) 0.152 16.3 (7.8–47.5) 23.5 (8.8–30.1) 0.859 0.735 0.463

LPS stimulationd

IL-12p70 (pg/ml) 4.8 (2.3-7.6) 3.9 (3.0–5.9) 0.453 4.7 (3.1–9.5) 5.4 (3.0–7.5) 0.277 0.315 0.900

IL-6 (ng/ml) 25.7 (10.9–58.6) 22.2 (10.2–36.6) 0.215 22.9 (12.2–106.8) 25.6 (13.7–42.6) 0.352 0.156 0.245

TNFa (ng/ml) 4.9 (1.8–9.3) 4.2 (2.0–7.6) 0.352 5.0 (2.0–25) 7.5 (3.0–13.4) 0.469 0.307 0.363

IL-10 (pg/ml) 72.6 (31.4–304.6) 60.0 (23.2–215.2) 0.408 47.1 (18.9–121.6) 97.8 (41.2–207.7) 0.215 0.334 0.683

Values are shown as median values with interquartile range. The level of significance was set to p,0.05 for all tests.
a Wilcoxon signed-rank test. Due to limited availability of PBMCs, the number of patients differed;
b 7 at pre-ART and 8 during IRIS event,
c 13 at pre-ART and 9 during IRIS event,
d 16 at pre-ART and 16 during IRIS event.

doi:10.1371/journal.pone.0113101.t002
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Figure 2. Pro- to anti-inflammatory ratios of innate cytokine production in TB-IRIS. Dots on these graphs represent cytokine ratios in PBMC
supernatants after stimulation with LPS (A), CMV (B) and PPD (C). Dots connected with full lines represent matched pairs of TB-IRIS patients (IRIS+) with
non-IRIS controls (IRIS-). Horizontal capped lines represent statistical comparisons between matched patients or between time points. A, pre-ART n516,
IRIS event n516; B, pre-ART n57, IRIS event n58; C, pre-ART n513, IRIS event n59. A Wilcoxon signed-rank test was used to calculate p values
between HIV patients. The level of significance was set to p,0.05.

doi:10.1371/journal.pone.0113101.g002
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balance between pro-inflammatory and anti-inflammatory cytokine levels has

been shown to drive systemic inflammation [33–37]. Accordingly, we found that

TB-IRIS was associated with a pro-inflammatory shift in the IL-6/IL-10 and

TNFa/IL-10 ratios after stimulation with LPS, but not CMV or PPD. An increase

in the IL-6/IL-10 ratio, caused by a decrease in IL-10, has previously been

Figure 3. Correlation of cytokine ratios to IFNc responses. Graphs represent the correlation between IFNc responses and IL-6/IL-10 or TNFa/IL-10 ratios
after stimulation with LPS (A), CMV (B) or PPD (C). Dots represent both TB-IRIS patients and non-IRIS controls during TB-IRIS or corresponding control
time point. The level of significance was set to p,0.05.

doi:10.1371/journal.pone.0113101.g003
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associated to the severity of systemic inflammatory response syndrome in patients

with sepsis [34]. Of note, the IL-10 levels upon LPS stimulation in the current

study were also somewhat lower during TB-IRIS. Although this difference did not

reach statistical significance, it could have shifted the cytokine balance towards the

pro-inflammatory side. In line with our findings, TB-IRIS patients from our

cohort have previously been shown to have a pro-inflammatory monocyte-gene

expression profile that is also perturbed in pattern recognition receptor pathways

[45]. Another study previously reported elevated TNFa production during IRIS

upon TLR2 stimulation with lipomannan, without an equivalent rise in IL-10

[16]. In the present study, we report a similar cytokine imbalance in the TLR4

branch of innate cytokine production. One could therefore argue that a disturbed

equilibrium between pro- and anti-inflammatory cytokine-production upon TLR

stimulation is implicated in the high degree of inflammation seen in TB-IRIS. This

preferential involvement of TLRs in TB-IRIS could also explain why no cytokine

shifts were observed after CMV- or PPD-stimulation, since these antigens

preferentially induce an adaptive response via the major histocompatibility

complex class II/T cell receptor pathway.

Intriguingly, the unbalanced cytokine ratios were inversely correlated to the

LPS-induced IFNc responses. This finding is somewhat contradictory, given the

fact that IL-6, TNFa and IFNc are all pro-inflammatory cytokines. However, IL-6

and TNFa are directly produced by monocytes after LPS stimulation, while IFNc
is not. Rather, LPS-induced IFNc originates from T cells and NK cells in response

to monocyte derived cytokines [46, 47]. We hypothesise that the cytokine ratio

shifts result from aberrant monocyte behaviour in these patients, given the

association of monocyte dysfunction with chronic HIV infection [48, 49]. In fact,

aberrant monocyte behaviour has previously been suggested to play a role in TB-

IRIS [50] and is in line with our hypothesis on the role of TLRs in TB-IRIS. Since

the balance between monocyte-derived cytokines seems to be disturbed upon TLR

stimulation, we speculate that this negatively affected the subsequent induction of

IFNc.

One limitation of our study was that patients and controls were not tested for

CMV and influenza infection status, potentially complicating the interpretation of

the CMV and influenza ELISPOT responses that we measured. This may not have

been a major problem for CMV, which reaches a high seroprevalence in sub

Saharan Africa [51, 52]. While influenza is clearly present in sub Saharan Africa

[53, 54], limited availability of epidemiological data make it difficult to assess the

expected recall response of our patients to this antigen.

Taken together, our data provide no evidence of an excessive IFNc response to

TB-associated antigens or other common recall antigens during TB-IRIS. In fact,

TB-IRIS was associated with a disturbed reconstitution of the IFNc responses to

CMV and LPS. For LPS, this was linked with a pro-inflammatory shift in the

innate cytokine balance. Together, our data provide evidence for a prominent role

for innate immune inflammation and possibly monocyte dysfunction in TB-IRIS

pathogenesis. Resolving the immune responses leading to TB-IRIS pathogenesis

could provide novel targets for treatment and prevention.
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